Approximate Inference in Graphical Models using LP Relaxations

نویسندگان

  • David Alexander Sontag
  • Tommi S. Jaakkola
چکیده

Graphical models such as Markov random fields have been successfully applied to a wide variety of fields, from computer vision and natural language processing, to computational biology. Exact probabilistic inference is generally intractable in complex models having many dependencies between the variables. We present new approaches to approximate inference based on linear programming (LP) relaxations. Our algorithms optimize over the cycle relaxation of the marginal polytope, which we show to be closely related to the first lifting of the Sherali-Adams hierarchy, and is significantly tighter than the pairwise LP relaxation. We show how to efficiently optimize over the cycle relaxation using a cutting-plane algorithm that iteratively introduces constraints into the relaxation. We provide a criterion to determine which constraints would be most helpful in tightening the relaxation, and give efficient algorithms for solving the search problem of finding the best cycle constraint to add according to this criterion. By solving the LP relaxations in the dual, we obtain efficient message-passing algorithms that, when the relaxations are tight, can provably find the most likely (MAP) configuration. Our algorithms succeed at finding the MAP configuration in protein side-chain placement, protein design, and stereo vision problems. Thesis Supervisor: Tommi S. Jaakkola Title: Professor

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate MAP Inference in Continuous MRFs

Computing the MAP assignment in graphical models is generally intractable. As a result, for discrete graphical models, the MAP problem is often approximated using linear programming relaxations. Much research has focused on characterizing when these LP relaxations are tight, and while they are relatively well-understood in the discrete case, only a few results are known for their continuous ana...

متن کامل

Linear Approximation to ADMM for MAP inference

Maximum a posteriori (MAP) inference is one of the fundamental inference tasks in graphical models. MAP inference is in general NP-hard, making approximate methods of interest for many problems. One successful class of approximate inference algorithms is based on linear programming (LP) relaxations. The augmented Lagrangian method can be used to overcome a lack of strict convexity in LP relaxat...

متن کامل

Exactness of Approximate MAP Inference in Continuous MRFs

Computing the MAP assignment in graphical models is generally intractable. As a result, for discrete graphical models, the MAP problem is often approximated using linear programming relaxations. Much research has focused on characterizing when these LP relaxations are tight, and while they are relatively well-understood in the discrete case, only a few results are known for their continuous ana...

متن کامل

Tighter Linear Program Relaxations for High Order Graphical Models

Graphical models with High Order Potentials (HOPs) have received considerable interest in recent years. While there are a variety of approaches to inference in these models, nearly all of them amount to solving a linear program (LP) relaxation with unary consistency constraints between the HOP and the individual variables. In many cases, the resulting relaxations are loose, and in these cases t...

متن کامل

Linear Programming Relaxations and Belief Propagation - An Empirical Study

The problem of finding the most probable (MAP) configuration in graphical models comes up in a wide range of applications. In a general graphical model this problem is NP hard, but various approximate algorithms have been developed. Linear programming (LP) relaxations are a standard method in computer science for approximating combinatorial problems and have been used for finding the most proba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009